Math 1433

8 January 2024

Warm-up 1:

 Simplify $\left(8^{1 / 2}\right)^{6}$.
Warm-up 2:

Give an angle that has $\cos (\theta)=\frac{1}{\sqrt{2}}$ and $\sin (\theta)=-\frac{1}{\sqrt{2}}$.

Complex numbers

You should already be able to expand

$$
(5-x)(2+4 x)=\cdots=10+18 x-4 x^{2}
$$

If we define i as a number for which

$$
i^{2}=-1
$$

we can calculate, for example,

$$
\begin{aligned}
(5-i)(2+4 i)=\cdots & =10+18 i-4 i^{2} \\
& =10+18 i+4=14+18 i .
\end{aligned}
$$

A complex number is anything that can be written as

$$
a+b i
$$

where a and b are both real numbers (either or both can be zero).

- The real part is the number a.
- The imaginary part is the number b (which is a real number).

The word "complex" here does not mean difficult or complicated (skomplikowana).
 It means made-of-multiple-parts (zespolona).

Magnitude and argument

The magnitude ${ }^{1}$ of a complex number is its distance from 0 .
We write z for the magnitude of a complex number z.

Examples:

- The magnitude of $4+3 i$ is 5 .
- In symbols, this is written " $4+3 i=5$ ".
- $2-7 i=\sqrt{53}$
- $-8=8$
- $a+b i=\sqrt{a^{2}+b^{2}}$ if a and b are real

Magnicude and argument

The argument of a complex number is the angle between the positive real axis and the line from 0 to that complex number.

We write $\arg (z)$ for the argument (the angle) of a complex number z.

Examples:

- The argument of $1+i$ is 45°.
- In symbols, " $\arg (1+i)=45^{\circ}$ ".
- $\arg (\sqrt{3}+i)=\frac{\pi}{6}$.
- The argument of $4+3 i$ is $\arctan \left(\frac{3}{4}\right)$, also written $\operatorname{atan}\left(\frac{3}{4}\right)$ or $\tan ^{-1}\left(\frac{3}{4}\right)$.

A calculator can tell us this is approximately 0.6435 , or 36.89°.

For a number

$$
z=a+b i,
$$

it can be difficult to find the magnitude and argument.

- This way of writing complex numbers is called rectangular form.

For a number

with $r>0$, the magnitude is exactly r and the argument is exactly θ.

- This way of writing complex numbers is called polar form.

Write

$$
8 \sqrt{3}-\sqrt{147}+\sqrt{-3}
$$

in both

- rectangular form $z=a+b i$.

$$
\sqrt{3}+\sqrt{3} i
$$

- polar form $z=r \cos (\theta)+r \sin (\theta) i$.
$\sqrt{6} \cos \left(45^{\circ}\right)+\sqrt{6} \sin \left(45^{\circ}\right) i$

Quiz 6
is moved to next week.

If

$$
z=8 \cos (\pi / 6)+8 \sin (\pi / 6) i
$$

calculate z^{2}, giving your answer in polar form.

$$
\begin{aligned}
z^{2} & =((4 \sqrt{3})+4 i)^{2} \\
& =(4 \sqrt{3})^{2}+2(4 \sqrt{3})(4 i)+(4 i)^{2} \\
& =(48-16)+(32 \sqrt{3}) i \\
& =32+(32 \sqrt{3}) i \\
& =32(1+\sqrt{3} i) \\
& =64\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right) \\
z^{2} & =64 \cos (\pi / 3)+64 \sin (\pi / 3) i
\end{aligned}
$$

For the previous example, we saw

$$
(r \cos (\theta)+r \sin (\theta) i)^{2}=r^{2} \cos (2 \theta)+r^{2} \sin (2 \theta) i .
$$

In fact,

$$
(r \cos (\theta)+r \sin (\theta) i)^{n}=r^{n} \cos (n \theta)+r^{n} \sin (n \theta) i
$$

is true for any n, including fractions and negative values.

You do not have to memorize this fact, though. Instead, we will use a shortcut-which you will need to memorize - that will make these formulas obvious.

Exponential form

FACT: $e^{\theta i}=\cos (\theta)+\sin (\theta) i$.

I am not going to explain why this is true. Instead, just think about this:

- Remember that 3 . x means $x+x+x$, but $-4.73 \cdot x$ is not about repeated addition. With matrices, $A B$ or $A \vec{v}$ can be thought of as applying a linear transformation. Still, these these are all multiplication.
- Similarly, x^{3} means $x \cdot x \cdot x$, but $x^{-4.73}$ is not about repeated multiplication. Still, these are both powers.

Exponential form

Fact: $e^{\theta i}=\cos (\theta)+\sin (\theta) i$

Multiplying both sides of this by r gives

$$
r e^{\theta i}=r \cos (\theta)+r \sin (\theta) i
$$

Writing a complex number as \qquad ${ }^{i}$ is called exponential form.

Example: $4 \sqrt{3}+4 i=8 \cos \left(\frac{\pi}{6}\right)+8 \sin \left(\frac{\pi}{6}\right) i=8 e^{(\pi / 6) i}$ rectangular form
polar form
exponential form

Exponential form

Fact: $e^{\theta i}=\cos (\theta)+\sin (\theta) i$

Basic algebra tells us that

$$
\left(r e^{\theta i}\right)^{n}=r^{n} e^{n \theta i} .
$$

Using the fact at the top turns this equation into

$$
(r \cos (\theta)+r \sin (\theta) i)^{n}=r^{n} \cos (n \theta)+r^{n} \sin (n \theta) i .
$$

Multiplication

In general,

$$
\left(r e^{\theta i}\right) \cdot\left(s e^{\phi i}\right)=(r s) e^{(\theta+\phi) i} .
$$

What does this mean visually?

Let's draw a dot • at $z w$ below.

Multiplication

Multiplying by i rotates a complex number by 90°.

What if we rotate by 90° and then rotate by 90° again?

We get $1 \times i \times i=-1$.

This provides another explanation for why the powers of i repeat the same four values and why $i^{-1}=-i$ (rotating 90° clock-wise from 1) and other negative powers simplify the way they do.

Task 1: Write $2+2 i$ in exponential form. $\sqrt{8} e^{45^{\circ} i}$
Task 2: Write $(2+2 i)^{6}$ in exponential form.

$$
\begin{aligned}
(2+2 i)^{6} & =\left(\sqrt{8} e^{45^{\circ} i}\right)^{6} \\
& =(\sqrt{8})^{6} e^{\left(45^{\circ} \cdot 6\right) i} \\
& =512 e^{270^{\circ} i}
\end{aligned}
$$

Task 3: Write $(2+2 i)^{6}$ in rectangular form.

Reck, and exponencial forms

 Multiplying $\left(\frac{-7}{2}+\frac{7 \sqrt{3}}{2} i\right)(2-2 \sqrt{3} i)$ is possible, but it takes a lot of algebra work.Multiplying $\left(7 e^{\frac{2 \pi}{3} i}\right)\left(4 e^{\frac{-\pi}{3} i}\right)$ is much easier:

$$
(7 \cdot 4) e^{\left(\frac{2 \pi}{3} i+\frac{-\pi}{3} i\right)}=28 e^{\left(\frac{\pi}{3} i\right)}
$$

We can then expand this to $28\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=14+14 \sqrt{3} i$ if we need to.

Complex conjugate

The complex conjugate (or just conjugate) of a complex number z is the reflection of z across the real axis.
It is written \bar{z} and spoken as "z bar".

Complex conjugate

How is \bar{z} calculated?

$$
\overline{a+b i}=a-b i
$$

$$
\overline{r e^{\theta i}}=r e^{-\theta i}
$$

